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Insecticide resistance in social insects: assumptions, 
realities, and possibilities☆ 

Michael E. Scharf1 and Chow-Yang Lee2   

Insecticide resistance is an evolved ability to survive insecticide 
exposure. Compared with nonsocial insects, eusocial insects 
have lower numbers of documented cases of resistance. 
Eusocial insects include beneficial and pest species that can be 
incidentally or purposely targeted with insecticides. The central 
goal of this review is to explore factors that either limit 
resistance or the ability to detect it in eusocial insects. We 
surveyed the literature and found that resistance has been 
documented in bees, but in other pest groups such as ants and 
termites, the evidence is more sparse. We suggest the path 
forward for better understanding eusocial resistance should 
include more tractable experimental models, comprehensive 
geographic sampling, and targeted testing of the impacts of 
social, symbiont, genetic, and ecological factors. 
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Introduction 
The goals of this review are to explore potential factors 
that either limit insecticide resistance or the ability to 
detect it in eusocial insects and to synthesize potential 
paths forward for a better understanding of eusocial re
sistance phenomena. Eusocial insects mainly include 
bees, wasps, ants, and termites. These insects live in 
groups that display overlapping generations, cooperative 
care of the young, and a division of labor among castes. 
The three general eusocial castes are workers, 

reproductives, and defenders (i.e. soldiers, guards), each 
with distinct morphological and behavioral phenotypes. 
Both eusociality and these castes evolved independently 
in the orders Hymenoptera (bees, wasps, and ants) and 
Blattodea (termites) that are mainly considered here. 

Insecticide resistance is the evolved ability of insects to 
survive in the presence of insecticides. From an opera
tional perspective, the Insecticide Resistance Action 
Committee defines resistance as “a heritable change in 
the sensitivity of a pest population that is reflected in the 
repeated failure of a product to achieve the expected 
level of control when used according to the label re
commendation for that pest species” [1]. Resistance is 
caused by pest adaptations that confer a selective ad
vantage in the presence of insecticides (Figure 1), 
leading to increased survival in subsequent generations. 
Insecticide resistance evolves in populations following 
Darwinian principles [2]. Centrally important to this 
review, there are thousands of examples of insecticide 
resistance in nonsocial insects, but comparatively 
minimal evidence in eusocial insects [3,4]. 

Most individuals within eusocial insect colonies are 
nonreproductives or ‘hopeful reproductives’ that retain 
the potential to reproduce. Primary reproductives com
prise smaller proportions of colonies and are long-lived 
individuals whose lifespan mirrors their host colony  
[5•,6•]. In the absence of primary reproductives, how
ever, supplementary reproduction usually becomes 
possible [7••]. Thus, most individuals in eusocial insect 
colonies are not capable of passing resistance genes to 
future generations. Also, nonreproductives are expend
able and can buffer colonies from insecticidal effects  
[8••]. For these reasons, it has been argued that in
secticide resistance evolution in eusocial insects should 
be impossible or at least rare [9]. 

Below, we explore the topic of insecticide resistance in so
cial insects. We consider multiple perspectives, including 
experimental constraints that may obscure an ability to ob
serve resistance, documented cases of resistance in eusocial 
insects and affiliated resistance mechanisms, and testable 
theories relating to social, symbiont, genetic, and ecological 
factors. We also suggest several approaches for consideration     
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by researchers to better document and understand the po
tential for resistance in eusocial insect species. 

Experimental constraints limiting the ability to 
study resistance in eusocial insects 
There are constraints to working with eusocial insects 
that impact the ability to study resistance. Nonsocial 
insects can be reared continuously to study resistance in 
small genetically distinct groups, usually having one or 
fewer generations per year (e.g. German cockroaches;  
[10–12]). However, eusocial insects must be reared as 
entire colonies that might require years or decades to 
reach testable numbers. Eusocial species that produce 
neotenic or supplementary reproductives might offer 
more tractable model systems (e.g. termites Reticulitermes 
or ants Monomorium pharaonis (L.) or Solenopsis invicta 
Buren), particularly for studying early phases of re
sistance evolution under different socio-environmental 
conditions. Bees, alternatively, are a tractable model 
system with excellent molecular and genetic resources 
that have yielded clear outcomes. 

Examples from bees 
Honeybees have reduced numbers of detoxification genes 
relative to nonsocial insects, which often is cited as a cause 
of increased susceptibility, but in reality, honeybees are 
well-adapted to thrive in the presence of environmental 
toxins [13–15•]. Widespread use of DDT through the 
1950s–1960s selected for DDT-resistant populations of 
honeybees in California [16,17]. Owing to their exposure to 
pesticides that target hive parasites and other diseases, 
honeybees have further adapted to tolerate numerous pes
ticides [13,17–20]. Regarding the insecticide imidacloprid, 
honey bee colonies produce two seasonal susceptibility 
phenotypes where winter workers are significantly more 
tolerant than summer workers [21•]. Investigating larval 
chronic exposure to a pesticide mixture revealed that 

different stocks had different susceptibilities [22]; specifi
cally, Old World/progenitor and feral stocks were the most 
pesticide-tolerant. 

Conversely, another study found that insecticides ne
gatively affect honey bee growth, development, foraging 
activity, and pollination by influencing olfaction, 
memory, navigation, flight, and dance circuits [23]. Even 
at low pesticide concentrations below “no-observed-ad
verse-effect concentrations (NOAEC),” transcriptional 
impacts seen in honey bee larvae are indicative of phy
siological stress [24]. However, honeybees can resist 
these harmful effects by coordinating the expression of 
immunity, metabolism, and detoxification genes [23]. 
Nutritional resources also modulate pesticide tolerance 
and titers of developmental hormones [25,26••]. It is 
clear from the above examples that bees can develop 
resistance and possess tolerance mechanisms that can 
overcome the deleterious effects of insecticides, in
cluding the relatively newer neonicotinoids [27–29]. 

Case studies from ants and termites 
Ants 
Initial studies to select for sodium arsenate resistance in 
Pharaoh’s ants, M. pharaonis, found only increased sus
ceptibility, suggesting that sodium arsenate resistance is 
impossible due to the “protection mechanism of the 
social food chain” [30]. In more recent work with the 
insecticide fipronil, dark rover ants (Brachymyrmex pata
gonicus Mayr) and white-footed ants (Technomyrmex diffi
cilis Forel) showed significant species-wide tolerance  
[31,32]. In a survey of 12 urban ant pests tested with 
bifenthrin, fipronil, and chlorfenapyr, odorous house ants 
(Tapinoma sessile [Say]) were consistently the most tol
erant species, which agrees with their invasiveness and 
difficulty to control [33••]. Another finding was that 
tolerance levels in T. sessile were independent of body 
mass, indicating the involvement of specific physiolo
gical resistance mechanisms. 

Termites 
Several studies have identified significant reductions in 
toxicity for soil termiticides in the Formosan subterranean 
termite Coptotermes formosanus Shiraki. This included a 
range of soil termiticides from the chlorinated hydrocarbon, 
pyrethroid, organophosphate, carbamate, and phenylpyr
azole classes [34–36]. The above studies also included the 
native sympatric termite Reticulitermes virginicus (Banks), but 
susceptibility differences were generally insignificant. Other 
studies revealed ∼twofold permethrin resistance between 
two populations of Reticulitermes flavipes (Kollar), 11–660-fold 
pyrethroid resistance among three populations of the sand 
termite Psammotermes hypostoma Desneux, and 20–27-fold 
chlorpyrifos resistance among two Microcerotermes diversus 
populations [36–38]. 

Figure 1  
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Overview of potential factors that impact insecticide resistance 
evolution, and its perception, in eusocial insects. The blue arrow in the 
center represents the evolutionary transition from insecticide- 
susceptible to insecticide-resistant states. The various contributing (+) 
and limiting (-) factors listed are discussed in this review.   
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Resistance mechanisms 
The two types of resistance in insects are behavioral and 
physiological (Table 1). Behavioral resistance is less 
common, and physiology underlies behavior [39,40•]. 
However, eusocial behaviors may provide a degree of 
innate tolerance. For example, the social food chain of 
ants in which carbohydrate or protein insecticide baits 
would cycle first through workers or larvae effectively 

protects reproductives [8••]. Also, decreased tunneling 
into insecticide-treated substrates was noted in C. for
mosanus termites [34], and ants express ‘particle cov
ering’ and necrophoresis behaviors that can protect 
colonies from insecticide exposure [41••,42]. 

Physiological resistance includes detoxification, target site, 
and penetration/transport mechanisms [3,43••–45•], and an 

Table 1 

Potential mechanisms for overcoming and avoiding insecticide impacts in social insects.      

Mechanism Insect (species) Insecticides affected References  

Physiological resistance    
Metabolic detoxification    
P450 Black garden ant (Lasius niger) Azadirachtin, β-cypermethrin, and ƛ- 

cyhalothrin  
Konorov and Nitikin [50]  

Red imported fire ant (Solenopsis 
invicta) 

Sulfluramid, triflumuron, fipronil,  
β-cypermethrin, and indoxacarb 

Zhang et al. [51], Siddiqui 
et al. [45]  

Honey bee (Apis mellifera) Cyfluthrin, ƛ-cyhalothrin, T-fluvalinate, 
imidacloprid, thiamethoxam, 
and thiacloprid 

Johnson et al. [18], Manjon 
et al. [27]  

Bumble bee (Bombus terrestris) Thiacloprid, acetamiprid Troczka et al. [28]  
(A. mellifera, B. terrestris) Imidacloprid, thiamethoxam, 

and thiacloprid 
Manjon et al. [27]  

Sand termite (Psammotermes 
hypostoma) 

Deltamethrin, α-cypermethrin, and ƛ- 
cyhalothrin  

Toughan et al. [37] 

Adrin epoxidase Formosan subterranean termite  
(C. formosanus) 

Aldrin, chlorpyrifos, and cypermethrin Valles and Woodson [35]  

Dark Southern subterranean termite 
(Reticulitermes virginicus) 

Aldrin Valles et al. [55] 

Esterases Eastern subterranean termite 
(Reticulitermes flavipes) 

T-Permethrin Valles et al. [36,54]  

Formosan subterranean termite  
(C. formosanus)  

Valles and Woodson [35]  

Sand termite (P. hypostoma) Deltamethrin, α-cypermethrin, and ƛ- 
cyhalothrin  

Toughan et al. [37]  

Honeybee (A. mellifera) Chlorpyrifos, coumaphos, coumaphos- 
oxon, fluvalinate, and propargite 

Milone et al. [22] 

Glutathione S-transferase (Microcerotermes diversus) Chlorpyrifos Ravanshadi et al. [38] 
Symbiont-mediated 
metabolism 

Eastern subterranean termite  
(R. flavipes) 

Imidacloprid Blanton et al. [68] 

Target site insensitivity    
Altered AChE (Microcerotermes diversus) Chlorpyrifos Ravanshadi et al. [38] 
Cuticular changes     

Formosan subterranean termite  
(C. formosanus) 

N/A Richardson et al. [56] 

Behavioral (social and 
ecological) resistance    
Nutrient flow Pharaoh ant (Monomorium 

pharaonis) 
Sodium arsenate Berndt [30]  

Ants (in general) N/A Csata and Dussutour [64], 
Gutierrez et al. [66] 

Reproduction 
(haplodiploidy, asexual) 

Social insects (in general) N/A Kato et al. [72], Martelossi [73] 

Particle-covering behavior Red imported fire ant (S. invicta) Fipronil, rotenone, and avermectin Wen et al. [41] 
Necrophoresis Argentine ant (Linepithema humile) N/A Choe et al. [42] 
Saturating birth rates Social insects (in general) N/A Field and Toyoizumi [7] 
Group size-dependent 
helping decisions 

Social insects (in general) N/A Field and Toyoizumi [7] 

Urban versus natural 
habitats 

Odorous house ant (Tapinoma 
sessile) 

N/A Blumenfeld et al. [78] 
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emerging concept is microbe or symbiont-mediated meta
bolism [46,47•]. Regarding detoxification, an analysis of 
65 insect genomes revealed that ants and termites have 
comparable numbers of detox-encoding genes to more re
sistance-prone insects [48]. Chronic exposure studies on 
black garden ant colonies, Lasius niger (L.), with the neoni
cotinoid thiamethoxam, revealed differences in the internal 
ratio of thiamethoxam to its metabolite clothianidin be
tween queens and workers, suggesting queens have superior 
detoxification capabilities [49]. P450 detoxification genes 
have elevated expression in urban-adapted L. niger, and the 
most elevated (CYP9) is capable of docking with mycotoxins 
and xenobiotics [50]. In work with S. invicta fire ants, 
knockdown of another P450 gene, CYP6AS160, supports its 
role in fipronil detoxification [51••]. 

No detox genes were induced in C. formosanus termites 
after exposure to chitin synthesis inhibitor insecticides  
[52], but numerous termite gut detox genes are in
ducible by wood-feeding [53]. No differences in P450 or 
GST detox activity were found among C. formosanus 
populations tolerant to chlordane, chlorpyrifos, and cy
permethrin, but differences in esterase activity were 
found [35]. Permethrin-hydrolyzing esterases were 
identified from permethrin-tolerant R. flavipes [36,54] 
and a functional P450 system documented in R. virgi
nicus [55]. Also, elevated P450 content and esterase ac
tivity occurred in pyrethroid-resistant P. hypostoma [37], 
and differences in AChE and GST activity were found 
in chlorpyrifos-resistant Microcerotermes diversus [38]. 
Regarding cuticular penetration, desiccation stress in
creases cuticular hydrocarbon production in C. for
mosanus [56]. In other insects, such changes have been 
associated with P450 genes that have potential over
lapping roles in insecticide detoxification and climate 
change adaptation [57–59]. It is also noteworthy that, 
other than the AChE insensitivity example noted above, 
no target site resistance has yet been identified in eu
social insects. Two possible explanations for the lack of 
target site resistance are genetic factors discussed later 
and the many detoxification examples noted above. 

Testable theories 
Intercolony susceptibility 
Sampling across multiple populations/species can reveal 
susceptibility differences that are indicative of resistance 
or evolving resistance. Comparisons of urban versus nat
ural ant colonies revealed urban colonies were more 
tolerant of the neonicotinoid dinotefuran; queens were 
more tolerant than workers toward dinotefuran, fipronil, 
and lambda-cyhalothrin; and T. sessile was the most tol
erant ant species overall [33]. Studies examining in
secticide susceptibility across termite colonies revealed 
differential susceptibility that generally agreed with in
secticide treatment history [34–38]. 

Social factors 
A meta-analysis comparing eradication efforts between 
eusocial versus nonsocial invasive species found that 
efforts were 79% less successful for eusocial than non
social species [60••], suggesting natural recalcitrance to 
insecticides by eusocial insects and/or that reproductives 
are not being impacted by insecticides [7••,61]. Alter
natively, eusocial species may be more susceptible to 
some kinds of toxicants because of horizontal transfer  
[62,63]. Thus, present-day insecticides and delivery 
strategies may be so well-engineered that they achieve 
‘high dose’ delivery that effectively limits resistance 
evolution. 

Another factor limiting resistance evolution (through 
protection of reproductives) may relate to colony nu
trient flow. Nutrition is important in the evolution/ 
maintenance of sociality and caste determination, and 
food collection relies on foraging workers whose nu
tritional requirements may differ from the rest of a 
colony [64]. Selective protein digestion by ant larvae 
can protect reproductive castes from insecticides, that 
is, protein preferentially flows into larvae and in
creases the carbohydrate:protein ratio in foraging 
workers [65]. 

Nutrient intake targets in ants may further serve a pro
tective function [64]. Larvae can improve worker im
munity to pathogens and parasites via this role in 
nutritional regulation [65], which may suggest a broader 
protective mechanism by larvae extending to in
secticides. For example, in ants, a trade-off was found 
between growth and survival for high-protein 
versus high-carbohydrate diets, where protein diets 
caused larger workers and carbohydrate diets caused 
higher lipid content [66]. In contrast, wood-feeding 
termites receive high-carbohydrate and low-protein diets 
that additionally present xenobiotic challenges and in
duce physiological defenses [53]. These examples might 
suggest that eusocial factors broadly favor colony fitness 
and induced tolerance over constitutively expressed re
sistance. 

Symbiont factors 
Eusocial insects are hosts to gut bacterial communities 
that serve a variety of functions [67•]. Termite re
productives can live for decades, leading to slow genetic 
turnover [5]; however, gut symbiont generation times are 
much faster, creating the potential for symbiont-medi
ated insecticide resistance [9,68••]. Conversely, in
secticides can cause a loss of termite social immunity 
and/or a loss of symbiont-mediated immunity to patho
gens [69,70], which may increase insecticide suscept
ibility and contribute to the lack of resistance identified 
in termites. 

4 Pests and resistance  
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Genetic and ecological factors 
Eusocial insects express higher degrees of genetic re
latedness than solitary insects, which is a primary driver 
in the evolution and maintenance of sociality [71]. Also, 
haplodiploidy in hymenopterans [72] and asexual queen 
succession in termites [73•] further increase genetic 
homogeneity within colonies. Such factors could limit 
the genetic variation necessary for resistance evolution. 
On the topic of epigenetics, while different social phe
notypes expressed by eusocial insects can be linked to 
specific epigenetic landscapes [74], thus far, no links 
between epigenetics and cases of eusocial resistance 
have been documented. 

Ecological factors may further limit the evolution of eusocial 
resistance. Two risk-limiting socio-ecological factors are sa
turating birth rates and group size-dependent helping de
cisions [7]. Another possibility with pest ants and termites is 
the existence of large untreated natural refuges that provide 
reservoirs for susceptible genotypes that dilute resistant 
genotypes during random outbreeding [75,76]. Another 
ecological factor is differential insecticide selection pressures 
and other xenobiotic challenges between urban and natural 
habitats [31,77,78••]. 

Conclusion 
This review considered insecticide resistance in eusocial 
insects, exploring potential factors that limit resistance in 
eusocial species and/or our ability to detect it. Bees clearly 
have the capacity to develop resistance, but examples from 
other eusocial pest species such as ants and termites are 
more limited due to apparent experimental and biological 
constraints. From an experimental perspective, eusocial in
sects must be reared as entire colonies that might require 
years or decades to reach testable numbers. Thus, we pro
pose species with supplementary reproductives as the most 
tractable experimental models. Based on our literature 
survey, conventional physiological resistance mechanisms 
have been documented in bees, ants, and termites that 
appear equally represented between eusocial and nonsocial 
insects. 

Additionally, social behaviors such as nonreproductive 
foraging and social food chains likely provide re
productive castes with innate levels of insecticide tol
erance that might supersede a need for all colony 
members to evolve more conventional mechanisms. 
Furthermore, based on our synthesis from the available 
literature, we propose approaches and testable theories 
that include continued testing for variation in insecticide 
susceptibility across colonies or populations and testing 
of the impacts of social, symbiont, genetic, and ecolo
gical factors on eusocial resistance evolution. We propose 
that considering these factors from systems biology and/ 
or holobiont perspectives will provide novel insights that 
lead to new abilities to document resistance in eusocial 

insects, manage invasive eusocial species, protect bene
ficial species, and achieve sustainable pest management. 
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