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We investigated the expression of 4 cytochrome P450 genes (CYP4G19, CYP6J1, CYP6K1, and CYP4C21) in 4 
field-collected strains (WM, RG386, CDR, and Ryan) of the German cockroach, Blattella germanica (L.), collected 
from California. The UCR susceptible strain was used as a comparison. Topical assays using a diagnostic dose 
(3× LD95) of deltamethrin revealed decreased sensitivity in all field-collected strains with mortality ranging from 
0% to 58%, and the addition of PBO before deltamethrin treatment increased mortality to 52.5%–87.5%. Using 
qPCR to investigate the expression levels of CYP4G19, CYP4C21, CYP6J1, and CYP6K1, we found that only 
CYP6K1 was significantly overexpressed (2.1–5.8× higher) in all field-collected strains when compared to the 
UCR strain. Next, we investigated the role of the CYP6K1 gene by performing gene knockdown using RNAi. 
After dsCYP6K1 treatment, the expression levels of CYP6K1 in WM and Ryan strains were significantly reduced 
(P < 0.01) by 91%–94% vs. those treated with dsEGFP (control) on the third and sixth day posttreatment. RG386, 
CDR, and Ryan strains were more susceptible compared to their respective controls to topically applied 
deltamethrin 6 days after treatment with dsCYP6K1. This study provides evidence of the involvement of the 
P450 CYP6K1 gene in pyrethroid resistance in some populations of German cockroaches.
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Introduction

The German cockroach, Blattella germanica (L.), is a major world-
wide indoor public health insect pest, especially in residential 
premises and food preparative establishments such as restaurants, 
food courts, food packaging factories, etc. (Lee and Wang 2021). 
The negative consequences of a German cockroach infestation 
include mechanical transmission of pathogenic microorganisms, 
respiratory illness (allergy and asthma), and hygiene issues (Cohn 
et al. 2006, Schal and DeVries 2021). To mitigate the negative 
impacts of cockroach infestations, insecticides have been the pre-
ferred control method due to their quick action, low cost, and 
availability. Over-reliance and indiscriminate use of insecticides 
have led to the development of insecticide resistance in German 
cockroaches (Scharf and Gondhalekar 2021). This species was 
estimated to have developed resistance to 42 insecticide active 
ingredients (Zhu et al. 2016, Lee and Rust 2021, Scharf and 
Gondhalekar 2021).

Using comparative analysis of the B. germanica genome, 
researchers uncovered an immense expansion of the cytochrome 
P450 monooxygenase (P450s) gene family, which is believed to have 
enabled the species to evolve a broad range of resistance to toxins 
and pathogens (Harrison et al. 2018). Many studies have emphasized 
the significant role of P450s in insecticide resistance; however, only 
a few studies have successfully uncovered the links between dif-
ferent isoforms of P450s and insecticide resistance in B. germanica 
(Scharf et al. 1998, 1999, Guo et al. 2010, Chen et al. 2019). The 
involvement of P450s in insecticide resistance has been primarily 
elucidated through bioassays with and without P450 inhibitors, such 
as piperonyl butoxide (PBO) and MGK-264 (Atkinson et al. 1991, 
Lee et al. 1996, Valles and Yu 1996, Chai and Lee 2010, Hu et al. 
2021, Scharf and Gondhalekar 2021). Research into the specific im-
portance and roles of individual P450 genes in conferring insecticide 
resistance in German cockroaches is still in its early stages. Of the 
different P450 genes that have been identified, only CYP4G19 has 
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been shown to contribute toward insecticide detoxification and pen-
etration resistance (Pridgeon et al. 2003, Guo et al. 2010, Chen et al. 
2020, Hu et al. 2021).

Lee et al. (2022b) discovered that the P450-related metabolic re-
sistance mechanism was a primary mechanism of pyrethroid resist-
ance in strains of B. germanica collected between 2018 and 2020 in 
California. In the current study, we examined deltamethrin resist-
ance and P450-mediated detoxification through topical applications 
in 4 field-collected strains (WM, RG386, CDR, and Ryan). We 
investigated the expression of four P450 genes, CYP4G19, CYP6J1, 
CYP6K1, and CYP4C21, and found that the CYP6K1 gene was 
significantly expressed in all field-collected strains. Next, we de-
termined the expression level of the CYP6K1 gene after dsRNA 
treatment in WM and Ryan strains. Lastly, we investigated whether 
dsCYP6K1 treatment on the field-collected strains led to an increase 
in deltamethrin susceptibility.

Materials and Methods

Cockroach Populations
Four field-collected strains of the German cockroach (WM, RG386, 
CDR, and Ryan) that were collected earlier from different localities 
in California from 2018 to 2020 were used in this study. For details 
on these strains’ collection sites and insecticide resistance profiles, 
refer to Lee et al. (2022a, 2022b). These strains were reared sep-
arately in the laboratory in 121-liter garbage bins equipped with 
an electrical barrier (Wagner et al. 1964) at 24 ± 2 °C, 30%–50% 
relative humidity, and 12-h photoperiod. Food (Purina Dog Chow, 
Nestlé Purina Petcare, St. Louis, MO, USA), water, and cardboard 
harborages were provided ad libitum. A susceptible laboratory strain 
(UCR), established from the Orlando Normal strain over 40 years 
ago, was used for comparison.

Topical Assay and Synergism
Field-collected cockroach strains were assessed for deltamethrin re-
sistance using a diagnostic dose (0.0339 µg/insect), which is equiva-
lent to the 3× LD95 generated earlier on the UCR strain (Georghiou 
and Mellon 1983, Mota-Sanchez et al. 2008, Lee et al. 2022a). 
Deltamethrin solution was prepared by diluting technical grade 
deltamethrin (≥98%, Sigma-Aldrich Corporation, St. Louis, MO, 
USA) in acetone. Adult males of 4 field-collected strains and the 
UCR strain were anesthetized with a brief CO2 exposure, and 1 μl 
of deltamethrin solution was applied to the first and second abdom-
inal sternites using a microapplicator (Burkard Manufacturing Co 
Ltd., Rickmansworth, UK). Five replicates of 10 adult males were 
used per treatment. Treated cockroaches were kept in a clean con-
tainer with dog food, water, and cardboard harborages. Mortality 
was scored at 72 h posttreatment. The control sets were treated with 
acetone.

Evidence of P450-mediated detoxification in the field-collected 
strains was examined using a topical treatment of 100 µg of PBO 
onto the first and second abdominal sternites in the same manner 
described above, followed by topical application of the diagnostic 
dose of deltamethrin 1 h later. The discrepancy in mortality between 
deltamethrin alone and deltamethrin + PBO was analyzed with the 
Mantel–Haenszel method in R version 4.3.1.

Total RNA Extraction and cDNA Preparation
Total RNA was extracted from the whole body of adult male 
cockroaches (minus legs) with TRIzol Reagent (Invitrogen, Carlsbad, 
CA, USA) and PureLink RNA Mini Kit (Thermo Fisher Scientific, 

Waltham, MA, USA) following the manufacturer’s instructions. 
Prior to RNA extraction, cockroaches were not treated with any 
insecticide. RNase-Free DNase I (Thermo Fisher Scientific Inc., 
Waltham, MA, USA) was used to digest genomic DNA from RNA 
preparations. RNA quality and quantity were determined by meas-
uring the absorbance ratio of 260/280 using the Epoch 2 Microplate 
Spectrophotometer (BioTek Instruments, Inc., Winooski, VT, USA). 
First-strand cDNA was synthesized using the Invitrogen SuperScript 
III First-Strand Synthesis SuperMix for qRT-PCR (Thermo Fisher 
Scientific Inc., Waltham, MA, USA). Total RNA (1 µg) was used to 
synthesize the first cDNA strand in a 20 µl total reaction volume fol-
lowing the manufacturer’s instructions, and the synthesized cDNAs 
were stored at −20 °C until use.

Quantitative Polymerase Chain Reaction (qPCR)
The transcription levels of four P450 genes (CYP4G19, CYP6J1, 
CYP6K1, and CYP4C21) were measured for each strain. Quantitative 
polymerase chain reaction (qPCR) was performed using PowerUp 
SYBR Green Master Mix (Applied Biosystems, Carlsbad, CA, USA) 
on a MyGo mini RealTime PCR system (Azura Genomics, MA, USA) 
according to the manufacturer’s protocol. Standard curves were es-
tablished using serially diluted cDNA samples to screen primer pairs 
with high specificity and an appropriate efficiency (E = 1.91–1.99, 
Supplementary Table S1). Each qPCR reaction (15 μl) included 7.5 
μl of PowerUp SYBR Green Master Mix, 0.5 μl of primer mix (an 
equal mixture of primers from 10 μM stock solutions), 1 μl of 4-fold 
diluted cDNA, and 5.5 μl of DEPC-water. The negative control was 
a “no-template” reaction. The reaction cycle applied the following 
PCR program: a melting step of 50 °C for 2 min, then 95 °C for 
2 min, followed by 45 cycles of 95 °C for 15 s and 60 °C for 1 min. 
All the reactions were run with 15 biological replicates prepared sep-
arately and 2 technical replicates for each. Blattella germanica actin 
5c (GenBank: AJ862721) was used as a housekeeping gene for nor-
malization (Supplementary Table S1). Kruskal–Wallis rank sum test 
was used to evaluate the differences of dCT values among strains, 
followed by a pairwise Conover-Iman test with Bonferroni correc-
tion for post hoc tests.

Synthesis of dsRNA
After observing that CYP6K1 was highly expressed in all field-
collected strains (see the Results section for more details), we fur-
ther utilized RNAi to examine the function of this gene. The dsRNA 
targeting CYP6K1 was designed based on the CYP6K1 mRNA se-
quence obtained from GenBank (accession number: AF281328) 
(Supplementary Table S2). The software siRNA-Finder version 1.2.3 
(Lück et al. 2019) was used to predict the number of siRNA, and 
the sequence region with the highest predicted siRNAs (listed in 
Supplementary Table S2) was selected for dsRNA synthesis. This 
software was also employed for off-target analysis. The off-target 
search pipeline commenced by dividing the RNAi trigger sequence 
region into all possible x-mers, where x represents the selected length 
of the siRNA. These x-mers were then matched against the German 
cockroach cDNA sequence database. We did not identify any off-
targets for the selected dsRNA region targeting CYP6K1. As an 
unrelated control, the enhanced green fluorescence protein (eGFP; 
accession number: JQ417433) sequence, which is not found in B. 
germanica, was employed (refer to Supplementary Table S2). dsRNA 
targeting 388 base pairs (bps) of the CYP6K1 gene (abbreviated as 
dsCYP6K1) and dsRNA targeting 264 bps of the eGFP gene (ab-
breviated as dsEGFP) were synthesized by RNA Greentech LLC, 
Frisco, TX, USA, followed the protocol described in Li and Zamore 
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(2019). All dsRNAs were diluted to a concentration of 1.5 μg/μl 
with RNase-free water and stored at −70 °C until use.

RNAi Experiment
WM and Ryan strains were utilized to assess the efficacy of dsRNA 
injections. Adult males were briefly chilled on ice, and 1.5 μg of the 
dsRNAs specific to CYP6K1 or eGFP was injected into the abdom-
inal intersegmental membrane with a 30G needle (BD PrecisionGlide 
Single-use Needles, Becton, Dickinson, and Company, Franklin 
Lakes, NJ, USA) fitted on a 0.25-ml glass syringe (Fortuna All 
Glass Syringes, Grainger, Lake Forest, IL, USA) using an electronic 
microapplicator (Precision Microapplicator 900X model, Burkard 
Manufacturing Co. Ltd., UK). The injected cockroaches were reared 
in standard conditions for recovery. Samples were collected on the 
third and sixth day postinjection to monitor RNAi efficiency using 
the qPCR method mentioned previously.

Chen et al. (2020) demonstrated that gene suppression fol-
lowing a single dose of dsRNA injection remained effective on day 
6 postinjection in the German cockroach. Based on this evidence, 
we selected day 6 for our topical assay for 4 field-collected strains. 
To assess deltamethrin susceptibility post-CYP6K1 inhibition, we 
conducted a topical bioassay at the diagnostic dose (0.0339 µg/
insect) on day 6 post-dsRNA injection, selecting only cockroaches 
that exhibited normal behavior postinjection for the bioassays. Five 
replicates of 10 adult males were used per treatment for the topical 
bioassay (50 males were used in each group). Mortality rates were 
adjusted by subtracting the control mortality rate (dsRNA-injected 
males treated with acetone only). The control sets were treated with 
acetone. Any surviving cockroaches were collected after the topical 
assay to verify whether CYP6K1 inhibition remained effective. The 
effects of CYP6K1 inhibition on deltamethrin resistance in the WM, 
RG386, CDR, and Ryan strains were determined using a Mantel–
Haenszel test using R version 4.3.1 by comparing the mortality 
of cockroaches between dsCYP6K1 and dsEGFP injection groups 
(N = 50 for each group). German cockroaches injected with either 
dsCYP6K1 or dsEGFP and treated with acetone alone were used 
as controls. Spearman’s correlation of the magnitude of the impact 
of treatment (difference between treatment and control) between 
dsRNA injection and PBO topical preapplication (described earlier) 
was calculated in R version 4.3.1.

Results

Deltamethrin Resistance and Synergism
All field-collected strains were less sensitive to the deltamethrin di-
agnostic dose compared to the UCR strain, with mortality ranging 
from 0% to 58% vs. the UCR strain at 100% (Fig. 1; Supplementary 
Table S3). Susceptibility toward deltamethrin varied between strains, 
with the highest mortality in WM (58%), followed by RG386 and 
Ryan (28% and 18%, respectively), and no mortality for CDR (0%). 
The addition of PBO before deltamethrin treatment significantly 
increased the mortality in all field-collected strains (52.5%–87.5%) 
(Fig. 1).

Expression of 4 P450 Genes
Expression levels of CYP4G19, CYP4C21, CYP6J1, and CYP6K1 
among 5 B. germanica strains were investigated by using qPCR  
(Fig. 2). CYP4G19 gene expressions in the 4 field-collected strains 
were not significantly different from that of the UCR strain (Fig. 2A). 
There was no significant difference in expression level of CYP4C21 
among the 5 strains (Fig. 2B). CYP6J1 was highly expressed in 

RG386 but not in other field-collected strains (Fig. 2C). CYP6K1 
was significantly overexpressed in all field-collected strains when 
compared to the UCR strain, with the overexpression ranging from 
2.1 to 5.8 times higher than that of the UCR strain (Fig. 2D).

Functional Analysis of CYP6K1 by RNAi
We performed an RNAi experiment to further examine the involve-
ment of CYP6K1 in deltamethrin resistance in WM and Ryan strains. 
Monitoring of RNAi efficiency showed that the expression levels of 
CYP6K1 were significantly lower in males with dsCYP6K1 treat-
ment than those with dsEGFP treatment on both third and sixth day 
posttreatment (Kruskal–Wallis rank sum tests; all χ2 values = 8.31; 
all P-values < 0.01; Fig. 3). The dsCYP6K1 treatment significantly 
reduced CYP6K1 mRNA levels by 93% and 94% in WM strain and 
by 92% and 91% in Ryan strain at third and sixth days, respectively. 
We further tested the deltamethrin susceptibility of field-collected 
strains at sixth day post-dsRNA treatment. We found CYP6K1 gene 
knockdown increased the susceptibility to deltamethrin significantly 
in the RG386, CDR, and Ryan strain (Fig. 4). No significant corre-
lation was found between dsRNA injection and PBO preapplication 
when comparing the magnitude of difference in mortality resulting 
from the 2 treatments (ρ = 0.4; P = 0.75)

Discussion

We investigated and found that the constitutive overexpression of 
CYP6K1 is associated with deltamethrin resistance in German cock-
roach populations collected from California. We demonstrated that 
this gene is involved in resistance, as CYP6K1 gene knockdown sig-
nificantly increased deltamethrin susceptibility in 3 field-collected 
strains: RG386, Ryan, and CDR (Fig. 4). However because mortality 
under CYP6K1 knockdown treatment never reached completely sus-
ceptible levels (i.e., 100% mortality) in any strain, it is likely that 
other resistance mechanisms, such as target-site resistance previously 
reported (Lee et al. 2022b), contributed to the total deltamethrin 
resistance in these strains. Furthermore, the WM strain did not expe-
rience a significant difference in mortality between CYP6K1 knock-
down and eGFP groups, indicating some strain-level variability in 
the importance of CYP6K1. This contrasts with the significantly 
increased mortality of all field-collected strains when treated with 
PBO + deltamethrin versus deltamethrin alone (Fig. 1), suggesting 

Fig. 1. Mortality of cockroaches of susceptible strain (UCR) and deltamethrin-
resistant strains (WM, RG386, CDR, and Ryan) 72 h after treatment with 
topically applied deltamethrin (0.0339 µg/insect) or deltamethrin (0.0339 µg/
insect) + PBO (100 µg/insect). An asterisk indicates a significant difference 
between deltamethrin and deltamethrin + PBO for the respective strain 
(Mantel–Haenszel test; P < 0.05).
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that the overall contribution of P450-driven resistance can also in-
volve other uninvestigated P450 genes. Additional factors, such as 
the functional differences between RNAi (which is highly specific at 
the mRNA level) and PBO (which is a general inhibitor at the pro-
tein level), may have contributed to discrepancies between the PBO 
and RNAi results.

CYP4G19 was previously linked to pyrethroid resistance 
and cuticular penetration-based resistance in German cockroach 
populations in the United States (Alabama), China (Shenzhen), and 
Taiwan (Pridgeon et al. 2003, Guo et al. 2010, Chen et al. 2020, Hu 
et al. 2021). However, CYP4G19 overexpression was only detected 
in one of the 4 resistant strains in California. Instead, overexpression 

Fig. 2. Relative expression levels of A) CYP4G19, B) CYP4C21, C) CYP6J1, and D) CYP6K1 genes among 5 cockroach strains. Error bars represent standard 
deviations of the means (n = 15). Bars with different letters are significantly different (Kruskal–Wallis rank sum test followed by pairwise Conover–Iman test with 
Bonferroni correction; P < 0.05).

Fig. 3. Relative expression levels of CYP6K1 in deltamethrin-resistant strains (WM and Ryan) after 3 and 6 days of dsRNA injection. Error bars represent standard 
deviations of the means (n = 6). Asterisks above the bars represent statistically significant differences from Kruskal–Wallis rank sum tests (**P < 0.01).
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of CYP6K1 was observed in all field-collected strains tested in this 
study, suggesting that the evolution of detoxification pathways of 
the same insecticide class can vary between populations (Nauen et 
al. 2022).

Cytochrome P450s are remarkable for their diverse functions, 
and their involvement in insecticide resistance is generally associ-
ated with metabolic resistance; this includes an increase in metabolic 
conversion of insecticides to less toxic metabolites and reduction of 
propesticide activation (Feyereisen 2012, Nauen et al. 2022, Ye et al. 
2022). Besides that, some studies suggested that the overexpression 
of the CYP4 family also contributes to insecticide resistance by 
enhancing cuticular hydrocarbon production, leading to reduced 
insecticide penetration (Chen et al. 2020, Feyereisen 2020). In 
this study, the experiments were conducted on adult male German 
cockroaches that no longer molt. Hence, the increased deltamethrin 
susceptibility after CYP6K1 gene knockdown is logically the result 
of decreased detoxification efficiency rather than reduced cuticular 
penetration. CYP6 cytochrome P450 genes have also been associated 
with pyrethroid resistance in other insects, such as lepidopterans and 
culicines (Yang et al. 2006, Zhu et al. 2010, David et al. 2013, Zou 
et al. 2019, 2022).

Recent studies demonstrated that CYP6 enzymes could metab-
olize deltamethrin through several pathways, but the primary route 
of metabolism seems to be 4-hydroxylation, making the molecule 
less toxic (Zhu et al. 2010, David et al. 2013, Elzaki et al. 2018, 
Yang et al. 2021). CYP6-related metabolic resistance is known to 
result in insects developing cross-resistance to other insecticides. 
For example, CYP6Z1 in Anopheles funestus Giles overexpression 
contributed to cross-resistance to pyrethroids and carbamates, 
while CYP6M2 in A. gambiae Giles is capable of metabolizing 
pyrethroids and organochlorines (Mitchell et al. 2012, Ibrahim et 
al. 2018). Overexpression of CYP6K1 homologs was previously re-
ported by Scharf et al. (2021) after 6 generations of indoxacarb 
selection, implying the potential of this gene to confer multiple re-
sistance in German cockroach populations. Further investigations 
are warranted to confirm the role of CYP6K1 homologs in 
conferring indoxacarb resistance and its potential to detoxify other 
insecticides.
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